Google
online mba programs
earn an online mba .
Showing posts with label Computer science. Show all posts
Showing posts with label Computer science. Show all posts

Virtual reality

Virtual reality (VR) is a technology which allows a user to interact with a computer-simulated environment, be it a real or imagined one. Most current virtual reality environments are primarily visual experiences, displayed either on a computer screen or through special stereoscopic displays, but some simulations include additional sensory information, such as sound through speakers or headphones. Some advanced, haptic systems now include tactile information, generally known as force feedback, in medical and gaming applications. Users can interact with a virtual environment or a virtual artifact (VA) either through the use of standard input devices such as a keyboard and mouse, or through multimodal devices such as a wired glove, the Polhemus boom arm, and omnidirectional treadmill. The simulated environment can be similar to the real world, for example, simulations for pilot or combat training, or it can differ significantly from reality, as in VR games. In practice, it is currently very difficult to create a high-fidelity virtual reality experience, due largely to technical limitations on processing power, image resolution and communication bandwidth. However, those limitations are expected to eventually be overcome as processor, imaging and data communication technologies become more powerful and cost-effective over time.
t is unclear exactly where the future of virtual reality is heading. In the short run, the graphics displayed in the HMD will soon reach a point of near realism. The audio capabilities will move into a new realm of three dimensional sound. This refers to the addition of sound channels both above and below the individual. The virtual reality application of this future technology will most likely be in the form of over ear headphones.

Within existing technological limits, sight and sound are the two senses which best lend themselves to high quality simulation. There are however attempts being currently made to simulate smell. The purpose of current research is linked to a project aimed at treating Post Traumatic Stress Disorder (PTSD) in veterans by exposing them to combat simulations, complete with smells. Although it is often seen in the context of entertainment by popular culture, this illustrates the point that the future of VR is very much tied into therapuetic, training, and engineering demands. Given that fact, a full sensory immersion beyond basic tactile feedback, sight, sound, and smell is unlikely to be a goal in the industry. It is worth mentioning that simulating smells, while it can be done very realistically requires costly R&D to make each odor, and the machine itself is expensive and specialized, using capsules tailor made for it. Thus far basic, and very strong smells such as burning rubber, cordite, gasoline fumes, and so-forth have been made. Something complex such as a food product or specific flower would be prohibitively expensive.

In order to engage the other sense of taste, the brain must be manipulated directly. This would move virtual reality into the realm of simulated reality like the "head-plugs" used The Matrix. Although no form of this has been seriously developed at this point, Sony has taken the first step. On April 7, 2005, Sony went public with the information that they had filed for and received a patent for the idea of the non-invasive beaming of different frequencies and patterns of ultrasonic waves directly into the brain to recreate all five senses. There has been research to show that this is possible. Sony has not conducted any tests as of yet and says that it is still only an idea.

It has long been feared that Virtual Reality will be the last invention of man, as once simulations become cheaper and more widespread, no one will ever want to leave their "perfect" fantasies.

Computer Science

Computer science, or computing science, is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. Computer science has many sub-fields; some emphasize the computation of specific results (such as computer graphics), while others relate to properties of computational problems (such as computational complexity theory). Still others focus on the challenges in implementing computations. For example, programming language theory studies approaches to describing computations, while computer programming applies specific programming languages to solve specific computational problems with solutions. A further subfield, human-computer interaction, focuses on the challenges in making computers and computations useful, usable and universally accessible to people.

The history of computer science predates the invention of the modern digital computer by many years. Machines for calculating fixed numerical tasks, such as the abacus, have existed since antiquity. Wilhelm Schickard built the first mechanical calculator in 1623. Charles Babbage designed a difference engine in Victorian times, and around 1900 the IBM corporation sold punch-card machines. However all of these machines were constrained to perform a single task, or at best, some subset of all possible tasks.

During the 1940s, as newer and more powerful computing machines were developed, the term computer came to refer to the machines rather than their human predecessors. As it became clear that computers could be used for more than just mathematical calculations, the field of computer science broadened to study computation in general. Computer science began to be established as a distinct academic discipline in the 1960s, with the creation of the first computer science departments and degree programs.Since practical computers became available, many applications of computing have become distinct areas of study in their own right.